
Estimating the Structural Dimension of Regressions via Parametric Inverse
Regression

Efstathia Bura; R. Dennis Cook

Journal of the Royal Statistical Society. Series B (Statistical Methodology), Vol. 63, No. 2.
(2001), pp. 393-410.

Stable URL:

http://links.jstor.org/sici?sici=1369-7412%282001%2963%3A2%3C393%3AETSDOR%3E2.0.CO%3B2-T

Journal of the Royal Statistical Society. Series B (Statistical Methodology) is currently published by Royal Statistical Society.

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at
http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained
prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in
the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
http://www.jstor.org/journals/rss.html.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed
page of such transmission.

The JSTOR Archive is a trusted digital repository providing for long-term preservation and access to leading academic
journals and scholarly literature from around the world. The Archive is supported by libraries, scholarly societies, publishers,
and foundations. It is an initiative of JSTOR, a not-for-profit organization with a mission to help the scholarly community take
advantage of advances in technology. For more information regarding JSTOR, please contact support@jstor.org.

http://www.jstor.org
Wed Jan 23 21:29:05 2008

http://links.jstor.org/sici?sici=1369-7412%282001%2963%3A2%3C393%3AETSDOR%3E2.0.CO%3B2-T
http://www.jstor.org/about/terms.html
http://www.jstor.org/journals/rss.html


J. R. Statist. Soc. B (2001) 
63, Part 2, pp. 393-41 0 

Estimating the structural dimension of regressions 
via parametric inverse regression 

Efstathia Bura 

George Washington University, Washington DC, USA 

and R. Dennis Cook 

University of Minnesota, St Paul, USA 

[Received November 1999. Final revision November 20001 

Summary.A new estimation method for the dimension of a regression at the outset of an analysis is 
proposed. A linear subspace spanned by projections of the regressor vector X, which contains part 
or all of the modelling information for the regression of a vector Y on X, and its dimension are 
estimated via the means of parametric inverse regression. Smooth parametric curves are fitted to 
the p inverse regressions via a multivariate linear model. No restrictions are placed on the 
distribution of the regressors. The estimate of the dimension of the regression is based on optimal 
estimation procedures. A simulation study shows the method to be more powerful than sliced 
inverse regression in some situations. 

Keywords: Asymptotic test for dimension; Dimension reduction; Inverse regression; Parametric 
inverse regression; Sliced inverse regression 

1. Introduction 

Let Y E R'li and X E IRil with joint cumulative distribution function (CDF) F(Y, X). Regression 
analyses typically tend to concentrate on the study of the first two moments of the condi- 
tional CDF of Y given X, F(Y1X). In general, though, the goal of regression is the study of 
the behaviour of F(YIX), as the value of X varies in its marginal sample space. As a means of 
characterizing the regression structure, consider replacing X by k < p linear combina-
tions of its components, ~JTx,  . . ., q ~ ; f ~ ,without losing information on F(Y1X) so that, for 
all values of X, 

where T,I is the p x k matrix with columns rl,. The notation U V .  VI W in expression (1) means 
that U is independent of V given any value for W (Dawid, 1979). Expression (I), as a 
mathematical formulation of the dependence of Y on X, was introduced by Cook (1994a). It 
expresses the fact that the conditional CDF  of YIX depends on X only through ~ J ~ x ,  the co- 
ordinates of a projection of X onto the k-dimensional linear subspace spanned by the 
columns of q~.  Consequently, ~ J ~ Xcontains equivalent or sufficient, in the statistical sense, 
information for the regression of Y on X. Most importantly, if k <p, then a sufficient 
reduction in the dimension of the regression is achieved, which in turn leads to sufficient 
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summary plots of Y versus q T x  as graphical displays of all the necessary modelling 
information for the regression of Y on X. Subsequently, sufficient summary plots can guide 
the selection of appropriate models for F(Y1X). 

For any vector or matrix a ,  let S(a )  denote its range space and dim{S(a)} denote its 
dimension. If expression (1) holds then it also holds with q replaced by any basis for S(q). In 
this sense, expression'(1) can be regarded as a statement about S(q) rather than a statement 
about q ,  per se. Thus, when expression (1) holds we follow Li (1991, 1992) and call S(q) a 
dimension reduction subspace for F(YIX), or for the regression of Y on X. 

Obviously, the smallest dimension reduction subspace provides the greatest dimension 
reduction in the predictor vector. There are several ways to define such a subspace. In this 
paper we use the central dimension reduction subspace, denoted SYl,(Cook, 1994b, 1996, 
1998a, b). SYi,is the intersection of all dimension reduction subspaces for F(Y1X) and is 
trivially a subspace but is not necessarily a dimension reduction subspace. The existence of 
central subspaces can be assured by placing fairly weak restrictions on aspects of the joint 
distribution of Y and X (Cook, 1994a, 1996). Throughout this paper, we focus on regressions 
for which central dimension reduction spaces exist. 

The subspace SYl,= Syl,(q) is in effect a 'metaparameter' that is used to index the 
conditional distribution of Y given X. The columns of the p x k matrix q will denote a basis 
for the central subspace SYlx,  and k will be used to denote its dimension or the structural 
dimension of the regression of Y on X (Cook and Weisberg, 1994). Our main objective is the 
estimation of S,,. 

The paper is organized as follows: existing dimension estimation methods, with emphasis 
on sliced inverse regression (SIR) (Li, 1991), are reviewed in Section 2. The example in 
Section 2 illustrates both the application of SIR and its limitations. The estimation method 
proposed, namely parametric inverse regression (PIR), is introduced and described in Section 
3. Section 4 contains its extension to the non-constant variance case. The algorithm des- 
cribing the PIR dimension reduction procedure is presented in Section 5. In Section 6, PIR is 
applied to the example of Section 2 and a simulation study to compare the power of the two 
testing methods for dimension is carried out. A concluding discussion is presented in Section 
7. The lengthier proofs are given in Appendix A. 

2. Background: inverse regression and sliced inverse regression 

Methods are available for estimating portions of the central subspace Syl,, provided that 
certain conditions are placed on the marginal distribution of the predictors. 

Let S,(,,,, denote the subspace spanned by {E(XIY) -E(X): Y E Q,}, where Q, cR"'is 
the marginal sample space of Y. Given expression (I), assume that the marginal distribution 
of the predictors X satisfy the following condition, which henceforth will be referred to as the 
linearity condition: for all b E IIB", ~ ( b ~ ~ l q ~ ~ )is linear in q T x .  

Under this linearity condition on the regressor distribution, Li (1991), theorem 3.1, showed 
that the centred inverse regression curve E(X1Y) - E(X) satisfies 

Equivalently, 

where C ,  = cov(X). 
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The linearity condition on ~ ( b ~ ~ l q ~ ~ )  is required to hold only for the basis q of the 
central subspace. Since q is unknown, in practice we may require that it holds for all possible 
q, which is equivalent to elliptical symmetry of the distribution of X (Eaton, 1986). Li (1991) 
mentioned that the linearity condition is not a severe restriction, since most low dimension- 
al projections of a high dimensional data cloud are close to being normal (Diaconis and 
Freedman, 1984; Hall and Li, 1993). In addition, there often exist transformations of the 
predictors that make them comply with the linearity condition. Cook and Nachtsheim (1994) 
suggested reweighting of the predictor vector to make it elliptically contoured. 

Suppose that C ,  > 0 and let Z be the standardized version of X, 

Obviously, E(Z) = 0 and cov(Z) = I,. The observable sample version 2 is constructed by 
replacing C,  and E(X) with their usual moment estimates. Also, since Z is a 1-1 and onto 
linear transformation of X, Y 1x l q T x  if and only if Y 1Z I P ~ Z ,where P = C.y2q or 
Pi = i = 1, 2, . . ., k. By condition (2), we obtain that ~ , : / ~ q ~ ,  

The containment relationship (3) readily implies that E(Z1Y) = Pi,E(ZIY), where Pp is the 
orthogonal projection operator for S(P) with respect to the usual inner product. It also 
implies that SE(Zly) andis a subspace of Sylz .  This does not guarantee equality between SE(Zly) 
Sylzand, thus, inference about SE(zly)possibly covers only part of SylZ.  The missed part of 
Sylzmight be recovered from higher order moments of the conditional distribution of Z 
given Y (Cook, 1998b; Cook and Weisberg, 1991; Li, 1991, 1992), but such issues are not 
addressed in this paper. We assume throughout that SE(zly)is non-trivial, in the sense that it 
contains non-zero directions, should such exist. 

Both equation (2) and expression (3) lead to the use of inverse regression as an estimation 
tool for a fraction of or the entire central dimension reduction subspace. A popular such 
method is SIR, proposed by Li (1991). In SIR, the range of the one-dimensional variable Y is 
partitioned into a fixed number of slices and the p components of Z are regressed on y, a 
discrete version of Y resulting from slicing its range, giving p one-dimensional regression 
problems, instead of the possibly high dimensional forward regression of Y on Z.  Then, a 
very simple nonparametric estimate of the inverse regression curve E(ZI Y) estimates the 
central dimension reduction subspace via estimating cov{E(ZI Y)}. This can be based on the 
fact that S[cov{E(ZI Y)}]= SE(zlnexcept on a set of measure 0 (for example, see Cook 
(1998a), proposition 11.1, and Eaton (1983), proposition 2.7). The SIR estimate of 
cov{E(ZI Y)} is given by 

where H i s  the fixed number of slices, lj/,= n,/n, with n being the total sample size and n, the 
number of observations in the hth slice, and riz, is the p-vector of the average of 2 within slice 
12. Let A1 2 A2 2 . . . 2 A,] be the ordered eigenvalues of ES{E(ZI Y)}. Li (1991) proved that, 
if d = dim(SE(zly)),the statistic 
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has an asymptotic X2-distribution with (p - d)(H - d - 1) degrees of freedom, provided that 
the regressors are normal. The test statistic can be used to estimate the dimension of S,,,,,, by 
performing tests o f d = j v e r s u s d > j + l ,  j = 0 , .  . . , p - 1. 

Other testing techniques based on inverse regression that use the same simple nonparametric 
estimation method as Li (1991) have been developed. Schott (1994) proposed a test which 
requires elliptically symmetric regressors, and for which the tuning constant is the number of 
observations c per slice as opposed to the number of slices H in Li (1991). To obtain the 
asymptotic distribution of his test statistic, Schott let c go to oo.Velilla (1998) introduced 
another testing method, which does not impose restrictions on the regressor distribution, 
where c is fixed and the number of slices H varies. 

SIR is a simple and useful technique for reducing the dimension in a regression problem; 
nevertheless, it has limitations. Normality of the regressor vector X is required for the X2 

asymptotic test for dimension to apply (Li, 1991). Requiring normality for the predictors was 
proved not to be necessary for the asymptotic result to hold in Bura and Cook (1999) and 
Cook (1998a), where it was shown that restrictions should be placed on the conditional 
covariance structure of the standardized version of X instead. These restrictions are trivially 
satisfied if X has a multivariate normal distribution, but they also contradict Li's (1991) claim 
that the asymptotic distribution of L, does not depend on the constant variance assumption 
of the conditional distribution of X given Y. Most importantly, SIR can be ambiguous about 
the estimate of the dimension as the latter depends sometimes crucially on the choice of the 
number of slices. As a result, all methods that depend on a tuning constant related to the 
choice of the number of slices suffer from the same ambiguity in estimation (Schott, 1994; 
Velilla, 1998). 

To illustrate some of the issues discussed above, we consider the horse mussel data: the data 
consist of a sample of 172 horse mussel measurements collected in the Marlborough Sounds, 
which are located off the north-east coast of New Zealand's South Island (Camden, 1989; Cook 
and Weisberg, 1994; Cook, 1998a). The response variable is muscle mass M, the edible portion 
of the mussel, in grams. The quantitative predictors are the shell width Win millimetres, the shell 
height L in millimetres, the shell length L in millimetres and the shell mass S in  grams. The actual 
sampling method is unknown, but we assume that the data are independent and identically 
distributed (IID) observations from the overall mussel population. The regression software 
package Arc (Cook and Weisberg, 1999) was used for the computations. 

A scatterplot matrix of the response, shell height, shell length, shell width and shell mass is 
presented in Fig. l(a). It is evident that the linearity condition needed for SIR to work may be 
violated. The transformed variables log(W) and log(S) will be used in place of W and S 
respectively, so that the linearity condition is satisfied by the regressor variables. 

The results of applying SIR to the regression of M on H, L, log(W) and log(S) are given in 
Tables 1 and 2; Table 1 contains the results when six slices were used and Table 2 when 15 
slices were used. The rows of both tables summarize hypothesis tests of the form d =j versus 
d > j. For example, the first row gives the statistic Lo = 156.68 with (p - d)(H - d - 1) = 
(4 - 0)(6 - 1) = 20 degrees of freedom and a p-value of 0.000. As we can see from Tables 1 
and 2 SIR gives contradictory results: it estimates the dimension to be 1 or 2, depending on 
the number of slices used. 

3. Parametric inverse regression 

The proposed new dimension reduction method of PIR fits smooth parametric curves on 
the p inverse regressions via a multivariate linear model. No distributional restrictions are 
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(a) (b) 

Fig. 1. Scatterplots of the mussel data: (a) untransformed predictors; (b) transformed predictors 

Table 1. SIR results for H= 6 

freedom 

0.000 

22.992 	 0.028 

9.0924 0.168 


Table 2. SIR results for H= 15 

imposed on the regressor vector. To model the conditional expectation of Z, the standardized 
version of the regressor vector X, given Y, a multivariate linear model is fitted with Z = 
(z,,. . ., z , ) ~being the response and Y = ( y , , . . ., ylll)Tthe explanatory vector. Let 

where the J; are arbitrary, R-valued linearly independent known functions of Y. Suppose 
that a random sample of size n is available on (Y, X) resulting in the n x m matrix y,,of 
observations on the responses, and in the n x p matrix X,, of observations on the predictors. 
Then, including a matrix of errors El,, the model becomes 
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where Z,, = (zij)= {X,,-E(x,,)}c;''~, an n x p random matrix, F,, = (x.,),an n x q fixed 
matrix withAi =X(Y;) =Ai - CiLIJ;i/n being the centred version ofJ;, =fi(Y,), and B = (P,i), 
the q x p matrix of coefficients. Centring is used so that the model is consistent with the fact 
that the expectation of the column averages of Z,, equals 0. The error matrix E,, satisfies 

where C,,, is a p  x p positive definite, unknown matrix that does not depend on Y and vec(E,) is 
the vector produced by concatenating the columns of the error matrix El,.The symbol @ 
denotes the Kronecker product. Clearly, the rank of F,, is q. We assume that n 3 max(p, q) 
to avoid trivial cases. No distributional assumptions on the errors are made except that 
the rows of the error matrix E,, are conditionally independent with mean 0 and constant 
covariance matrix CZl,,  given all the responses Y,,. 

According to equation (5 ) ,  SE(zIyjis the linear subspace of SyI,which is spanned by the 
rows of F,,B, i.e. s (B~F ;~ )  = SE(,i,r,.Therefore, since 

rank(F,,B) < dim(SyIZ), yielding that rank(F,,B) is a lower bound on the dimension of the 
central dimension reduction subspace. 

Observe that rank(F,,B) = r a n k ( ~ ~ F ; f F , , ~ )rank(B) since F;~F,, a positive definite = is 
matrix (see section A4.4 of Seber (1977)). In consequence, inference on the dimension of 
SE(Zl,r,can be based solely on B in the sense that an estimate of the rank of B constitutes an 
estimate of a lower bound on the dimension of Syiz .  

The estimate of B to be used for inference on the rank of B is the ordinary least squares 
estimate, given by 

Since Z,, is unobservable, B,, is unobservable and thus in practice it is necessary to use the 
sample version of Z,, when computing B,,. However, it is sufficient to work in terms of Z,,for 
deriving the asymptotic distribution of the test statistic A, described in theorem 1 for the 
rank of B. To find the asymptotic distribution of Ad, we first need to find the asymptotic 
distribution of a standardized version of B,,. 

Let H,, denote the covariance matrix of ,/n vec(B,, -B), i.e. 

H,,= EZi,,@ (~;fF,,/n)-' . 

If HI, has a positive definite limit matrix H, then 

provided that certain conditions are satisfied (see lemma 1 in Appendix A) 
Assume that there is a q x q positive definite matrix G so that 

Also, assume that aconsistent estimate gzl,is available, as C I ,  is usually unknown. For example, 
gLi,can be taken to be (n - q ) - ' ( ~ , ,-F , , ~ , , ) ~ ( z , ,- F,,B,,), which is also unbiased for C Z l , .  Let 
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Then, if assumption (9) holds, 

f in  ,I% I3 in probability. (11) 

The convergence in expression (1 1) is a direct application of the triangle inequality and the 
fact that continuous functions of consistent estimates are themselves consistent. The remarks 
above in conjuction with a direct application of the multivariate version of Slutsky's theorem 
(see expression [A4.19] in Bunke and Bunke (1986)) and expression (8) obtain the following: 

Let d = dim(SE(z ) and G;' = F;fF,,/n. We have shown that d = rank(B) and thus, since 
rank(B) = rank(Gpl'BEi~"), we use the standardized matrix 

to estimate d where 

is now the estimate of B based on the sample version z,,= (X,, - ~ , , ) 9 ; ' / ~of the standardized 
predictor matrix Z,,, where XI,and 9, are the usual sample moment estimates of E(X,,) and 
E x  respectively. We give a test statistic (A,) for d = rank(B) = dim(SE(,l,,) in theorem 1. The 
proof is given in Appendix A. 

Theorem I .  Assume that model (5) holds, that GI, converges pointwise to a positive definite 
limit and that gZl,is a consistent estimate of Ezl,,. Let Jj ,  j = 1, . . ., min(q, p), be the 
singular values of B,,,. Then 

is asymptotically distributed as a X;q-o')(p-d) random variable. 

We use A, as a test statistic for the rank of B. For example, to test the hypothesis that 
d = 1 compare A, with the percentage points of a X2-distribution with (q - l)(p - 1) degrees 
of freedom. As an aside, it is easy to see that the asymptotic test in theorem 1 coincides with 
the usual F-test for testing d = 0, i.e. that all the coefficients are 0, when p = 1. 

4. The non-constant covariance case 

In Sections 2 and 3 the parametric models that were used assumed that the covariance 
structure of the error matrix given Y was constant, i.e. independent of Y. Occasionally, this 
assumption may be seriously violated, resulting in dimension estimation errors. In this 
section the non-constant error covariance structure case is addressed. 

We assume that the regression model (5) holds but now cov(Z/Y) is a function of Y: 

In consequence, the covariance structure of the error matrix El,can no longer be represented 
by the Kronecker product of EZl,, and the identity I,,,for 
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fork = 1, . . ., n, i, j = 1, . . ., p.  Hence, the covariance matrix of vec(Z,, ly,,), and consequently 
of vec(E,,), is an np x np symmetric matrix consisting of p2 blocks of order n x n, where the 
ijth block is the diagonal n x n matrix with a,,(Yl), . . ., alj(Y,,) along its main diagonal for i, 
j=  1 , .  . . , p .  

In vector form, B,, can be written as 

where W,, = ( F ~ F , , ) - ~ F ~is a q x n known matrix of weights. The covariance matrix of 
vec(~, , )  equals 

Thus, cov{vec(~,,)} is a qp x qp block matrix, whose ijth block is given by 

for i, j = 1, . . ., p,  and HI, = cov{nli2 vec(W,,Z,, - B)} is a qp x qp block matrix, whose ijth 
block is given by expression (15) multiplied by n. 

Assuming that HI, has a positive definite limit H ,  we readily obtain 

provided that conditions (a)-(c) of lemma 1 in Appendix A are satisfied. Additionally, 
expression (16) also holds if the conditional covariance of XI and X, given Y is asymptotically 
constant for all i, j = 1, . . ., p (see lemma 2 in Appendix A). 

Let gz1,(Y) = (&,(Y)) be a consistent estimate of XZl,  (Y) = (a,,(Y)), for all i, j = 1, . . ., p 
and all Y E fiu. Let A,, be the qp x qp matrix whose ijth block is given by expression (15) 
multiplied by n, with &,,(Y,) in place of a,(Yk). 

Since H, is non-singular, if it were also consistent for H ,  then by the multivariate version of 
Slutsky's theorem we would obtain 

'D 
&H;li2 vec(W,,Z,, -B) -+ N,,(O, I,, = I, €4 I,). 

The dimension d is not affected by this non-singular transformation. Weak consistency, in the 
sense of A,, -+ H in probability, is easy to establish given a weakly consistent estimate of 
XZl,(Y). Moreover, by placing further conditions on the entries of gz1,,(Y) we obtain that H, 
is L~ consistent for H (see lemma 3 in Appendix A). 

Let vec(B,,,) = The q x p matrix Bstdthat results from the arrangement Aili2v e c ( ~ , ~ , ) .  
of the vector vec(Bstd) into p columns satisfies rank(B,,,) = rank(^,,^,,), since Aili2 is non- 
singular. Also, let 

where $,, j = 1, . . ., min(p, q), denote the ordered singular values of B,,,. The following 
theorem states the conditions under which the asymptotic distribution of A ,  is X2. 

Theorem 2. Assume that conditions (a)-(c) of lemma 1 are satisfied and that A,, is 
consistent or L~consistent for a positive definite matrix H .  If d = rank@) = dim(S,~,l,,), 
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then A, as defined in equation (17) is asymptotically distributed as a X~,lp,l)(,pd) random 
variable. 

Proof. The proof is analogous to the proof of theorem 1 in Section 3. 

The inferential procedure on d is the same as in the constant covariance case, provided that 
XZl,(Y) can be estimated consistently. The computation of a consistent estimate of Czl , ,  is 
presented next. 

Assume that E(z;) < m, for all j = 1, . . .,p. Let 

for i, j E {I,  2, . . .,p}, where fin(.1y) denotes the least squares estimate of E(.IY) from 
regressing the argument in (.) on Y. The choice of the regression model to be fitted on the 
argument in (.) is guided by the data. Under well-known conditions, least squares estimates 
are consistent and thus 

in probability, for all i, j E (1, 2, . . .,p}, and all Y E a,. 
Let gzI,(Yk) be the p x p matrix with entries given by equation (18), computed at Y, for 

k = 1, . . ., n. Then, expression (19) implies that gZl,(Y,) is a consistent estimate of X,l,,(Yl,), 
for all k =  1 , .  . ., n. 

To obtain ~ ~ - c o n s i s t e n c ~  for the covariance matrix estimate fil l ,  we should also require 
that ?,(Y,) be L~consistent for a,(Y,), for all i, j = 1, . . .,p,  k = 1, . . ., n, and that 

for all k ,  I = 1, . . ., n, k # 1 (see lemma 3). 

5. Parametric inverse regression algorithm 

We can use the asymptotic distribution of A, to estimate the rank d of B, or equivalently the 
dimension of the subspace S,(Zlu)c SyZ ,  as follows: start with j = 0.To test the hypothesis 
that d =j, carry out the following steps. 

Step I: by visual inspection of the scatterplot matrix, decide what function(s) of Y fit 
the data the best. The choice of function(s) can be facilitated by dynamically overlaying 
curves on the scatterplots such as polynomials of different degrees. This can be easily 
implemented in software that supports dynamic graphics. Form the centred incidence 
matrix F,, for the p inverse regressions, and compute its rank q. 
Step 2: standardize the regressor vector by letting z,,= (X,, - ~ , , ) 9 ; ' / ~ ,where XII = l , , ~ ~  
and 9, is the moment estimate of the covariance matrix of X. 
Step 3: obtain the least squares matrix of estimated coefficients B,, from the p inverse 
regressions of the PI,i = 1, 2, . . ., p,  on Y. 
Step 4: by visual inspection of the scatterplot matrix, decide whether the constant co- 
variance assumption holds. If it does, 

(a) let g,,,be the matrix of residuals from the regression of Z on Y divided by n - q, and 
G, = (F;F,/n)-' and 

(b) compute the standardized least squares matrix of coefficients, B,,, = G ; ' / ~ B , , ~ ~ : / ~ .  
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If it does not, 

(a) 	use least squares to estimate 3i,(Y,,) as described in equation (IS), for k = 1, . . ., n, 
(b) let W,, = (F;F,~)-'F~~.Form the covariance matrix HI,,as a qp x qp matrix, whose 

ijth block is given by expression (15) multiplied by n. 
(c) 	 compute the standardized matrix of coefficients Bstdas described in the paragraph 

preceding equation (17). 

Step 5: compute the ordered singular values J j  of fist, and construct the test statistic A,. 
Step 6: compare A, with the quantiles of a X ~ , j - i ) X ( q _ j )  distribution; if it is smaller conclude 
that d =j; if it is bigger, conclude that d >j, set j =j + 1 and repeat the procedure. 

The d eigenvectors of the least squares estimate of B, that correspond to its d largest 
eigenvalues, multiplied by F,, yield estimates of d of the basis vectors of S,,,. They, in turn, 
can be scaled back to estimates of basis vectors of the central dimension reduction subspace 
for the non-standardized X, by multiplication with 9;li2on the left. 

6. 	 Applications and simulations 

6.1. The horse mussel data revisited 
To illustrate the PIR dimension reduction method, we reconsider the horse mussel data. The 
scatterplot matrix in Fig. l(b) visually suggests fitting quadratic curves on all three inverse 
regression plots. The quadratic fit is also supported by overlaying polynomials of degree 2 on 
the scatterplots of the regressors versus the response. The results of the analysis are given in 
Table 3. 

The test indicates a one-dimensional structure. Thus, one linear combination of the 
regressors is sufficient to characterize the behaviour of the conditional CDF of M given H, L, 
log(S) and log(W): 

The coefficients of the transformed regressors in expression (20) are the elements of the 
eigenvector corresponding to the largest eigenvalue from the eigenanalysis in step 6 of the PIR 
algorithm of Section 5. 

6.2. Power comparison of sliced inverse regression and parametric inverse regression 
This section contains a simulation-based comparison of the power of the two dimension 
estimation methods SIR and PIR. For all regression models to be considered in this section, 
three sample sizes are used: n = 50, 100, 250. For each sample size and each distribution of 
the regressor vector X, thep-values corresponding to the test statistics for selected dimensions 
for both tests were collected over 1000 replications. For the PIR method, only polynomials in 
Y were fitted to the inverse regressions. The degree of the polynomial was decided on by a 
visual inspection of the scatterplots of a few initial simulated data, in conjunction with the 

Table 3. Results for the mussel data 

freedom 

0.000 
5.8895 0.1 17 
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interactive superimposition of curves of different degrees. The latter can be easily carried out 
in Arc (Cook and Weisberg, 1999). 

The first model to be studied has structural dimension 1. The response Y is generated 
according to the model 

where E is a standard normal variate. Two distributions are considered for the regressor 
vector X: 

(a) 	X - N(0, I,) and 
(b) 	X distributed as Pearson type I1 with parameters m = -0.5 and C = I, (Johnson, 

1987). 

The Pearson type I1 distribution belongs to the family of elliptically contoured distributions 
and therefore satisfies the linearity condition that is necessary for the theory to apply. 

The numerical entries of the rows of Tables 4 and 5 corresponding to the test statistics 
indexed by 0 are empirical estimates of the power of the corresponding test. They represent 
the proportion of times that the null hypothesis of dimension 0 is rejected, when the nominal 
significance level is 0.05. The numbers in parentheses are the analogous proportions for a 
significance level of 0.01. The entries of the rows of Tables 4 and 5 corresponding to test 

Table 4. Empirical power and size of SIR applied to model (21) 

Results for normal X 	 Results for Pearson II X 

H = 5  H =  10 H =  15 H = 5  H =  10 H =  15 

Table 5. Empirical power and size of PIR for model (21) 

Results for normal X Results for Pearson II X 

Degree I Degree 2 Degree 3 Degree 4 Degree 1 Degree 2 
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statistics indexed by 1 are empirical estimates of the size of the test. The missing entries in 
Table 5 correspond to fitting a first-degree polynomial, thus allowing only the test of d = 0 
versus d = 1 because q = 1. The row entries of the tables throughout this section are to be 
interpreted in the same or an analogous way. The symbol H stands for the number of slices, 
and degree stands for the degree of the fitted polynomial. 

Apparently, the SIR and PIR tests are roughly equally powerful for both normally and 
Pearson-11-distributed Xs, with PIR performing uniformly slightly better. The estimated power 
entries also seem to indicate that the performance of SIR deteriorates as the number of slices 
increases, especially when X is Pearson I1 distributed and the sample size is small. PIR's 
performance, in contrast, is consistently more powerful even when we overfit the inverse mean 
functions as exhibited in Table 5 where polynomials of degree 2,3 and 4 were fitted (for normal X). 

Next, we consider the following model of structural dimension 2: 

where E is a standard normal variate. The regressor vector Xis assumed to have a four-variate 
standard normal distribution. 

From Table 6 we can see that SIR would fail to detect dimension 2 with probability as high 
as 0.94 (when n = 50 and H = 15). For SIR to give correct results, the sample size would have 
to be significantly increased. In our simulations, SIR performs well when n = 250 and the 
number of slices is small. However, PIR is significantly more powerful for all sample sizes, 
even for a sample size of 50, and both degrees 3 and 4 (Table 7). 

The last model that we study is based on model C in Velilla (1998), page 1094. The 
regressor vector xT= (XI, . . ., X5) was generated so that X1 = W,, X2 = V1+ W,/2, 
X, = - I/, + W2/2, X, = V2 + V, and X, = V, - V,. The only restriction placed on V and W 
is that they be independent. Here, V,, V2 and V, are IID t(,) random variables, V3 - t(3) and 
V, - t(,,, and Wl and W, are IID gamma(0.25) random variables. The dependent variable y 
was generated according to the model 

where E is a standard normal variate. 

Table 6. Empirical power and size for SIR applied to model (22) 

Results for the following values of H: 

5 10 I5 30 

n = 50 
Lo 0.677 (0.486) 0.589 (0.319) 0.403 (0.161) 
L I 0.163 (0.049) 0.123 (0.028) 0.062 (0.009) 
Lz 0.005 (0.001) 0.010 (0) 0.005 (0) 

n = 100 
Lo 0.951 (0.885) 0.919 (0.819) 0.879 (0.743) 
LI 0.444 (0.244) 0.357 (0.164) 0.305 (0.121) 
Lz 0.018 (0.004) 0.023 (0.004) 0.013 (0.003) 

n = 250 

Lo 1.0 (0.999) 1.0 (1.0) 1.0 (0.998) 0.998 (0.99) 

L1 0.934 (0.832) 0.922 (0.821) 0.844 (0.697) 0.705 (0.477) 

Lz 0.038 (0.004) 0.036 (0,001) 0.038 (0.005) 0.026 (0.002) 
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Table 7. Empirical power and size of PIR applied to model (22) 

Resultsfor the follo~ving values of n and degrees: 

n = 50 n = 100 n = 250 

Degree 3 Degree 4 Degree 3 Degree 4 Degree 3 Degree 4 

Model (23) has structural dimension 2. The regressor distribution satisfies the linearity 
condition by construction (see Velilla (1998), pages 1092-1093), even though it does not have 
an elliptically contoured distribution. 

Table 8 indicates that SIR estimates the structural dimension to be 1, across sample sizes 
and choices of the number of slices. However, from Table 9 we can see that PIR is performing 
much better with power ranging from 56.2%, when n = 50, the level is 0.01 and a cubic 
function is fitted, to 90.4% when n = 250, the level is 0.05 and a fourth-degree polynomial is 
used. 

All power calculations performed for the models presented in this section, as well as a 
number of power calculations for other models and/or other regressor distributions not 
reported in this paper, indicate that PIR is at least as powerful as SIR for models with normal 

Table 8. Empirical power and size of SIR applied to model (23) 

Resultsfor the following values of H: 

5 10 I5 30 

n = 50 
Lo 0.996 (0.996) 0.951 (0.718) 0.831 (0.5) 
L I  0.039 (0.009) 0.075 (0.014) 0.085 (0.019) 
L2 0.001 (0) 0.002 (0) 0.007 (0,001) 

n = 100 
Lo 1.0 (1.0) 1.0 (1.0) 1,o (1.0) 
L I 0.032 (0,008) 0.079 (0.026) 0.119 (0.035) 
L2 0.001 (0) 0 (0) 0.007 (0) 

n = 250 
Lo 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 
L1 0.049 (0.014) 0.13 (0.064) 0.164 (0.071) 0.183 (0.9) 
L, 0.002 (0) 0.004 (0) 0.007 (0) 0.01 1 (0.003) 

Table 9. Empirical power and size of PIR applied to model (23) 

Results for the fol10,ring values of n and degrees: 

n = 50 n = 100 n = 250 

Degree 3 Denree 4 Degree 3 Degree 4 Degree 3 Degree 4 
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or normal-like regressor distributions. More importantly, the simulation study shows that 
PIR, along with its non-constant variance version, is significantly more powerful when the 
models are more 'complex', and/or the regressor distributions are far from normal, as in the 
case of model (23). Nevertheless, our simulations also tend to indicate that the non-constant 
PIR method should be employed only when the violation of the constant variance assump- 
tion is serious as it requires yet an additional estimation step. 

7. 	 Discussion 

We have presented the new method of PIR for dimension reduction in a regression context. 
PIR fits linear models to the inverse regressions of X on Y. An asymptotic x2-test for the 
dimension d of S,(,,,, is obtained as a result of the asymptotic normality of the least squares 
estimate of B. The estimated dimension is an estimate of a lower bound for the dimension of 
SY,,. 


The results were also extended to the non-constant covariance structure case, under certain 
conditions. The technique of PIR does not impose any restrictions on the distribution of X. 
Even though it requires choosing the parametric function to be fitted, this is guided by and 
based on the observed data. In contrast, SIR and its variants (Schott, 1994; Velilla, 1998) 
require the subjective a priori choice of a tuning constant, such as the number of slices, which 
is not suggested by the observed data but is rather arbitrarily selected. In consequence, PIR 
does not suffer from the ambiguity of the dimension estimation of the aforementioned 
methods. 

The power of the PIR x2-test is shown to be higher than the SIR x2-test's via a simulation 
study. This is not surprising as 

(a) 	we are fitting continuous curves based on all the data, instead of grouping the data in 
slices, and 

(b) the fitting method is least squares, a method yielding estimates with optimal properties. 

As we confined the study only to fitting polynomials, we would expect even higher power gain 
by including other parametric curves that appear to reflect the data pattern more accurately. 
Nevertheless, PIR is desirable when marginal plots of the predictors versus the response give 
a good idea about a functional form for the inverse mean functions. When there is doubt 
about these mean functions, SIR may be the better choice. 

PIR can be easily implemented as the computer code is distributed freely. The code can be 
downloaded from http :/ /gwis2.circ .gwu. edu/-eburalpublications .html.It 
requires obtaining Arc first (Cook and Weisberg, 1999) from www .stat .umn .edu/arc. 
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Appendix A 

Leinma I. Let M,>,be the space of all pq x pq positive definite matrices and let F be the space of 
distributions of the errors E,,. If 
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then 

provided that the following three conditions are satisfied: 

where M ( F )  = {S,, xxT dF(x): F E F )  c M,>. The notation l l , l l m a x  identifies the norm on the vector 
space of matrices defined by II(aji)I(,ax =max,,, la,,(, for a matrix A = (a,,). Also, Xn,i,(X) is the smallest 
eigenvalue of X and r is some positive real value. The error distributions that are usually considered 
satisfy conditions (b) and (c). 

Proof. The lemma follows readily from theorem 2.4.3 of Bunke and Bunke (1986), and the multi- 
variate version of Slutsky's theorem (see expression [A 4.191 of Bunke and Bunke (1986)). 

A. 1. Proof of theorem 1 
Consider the singular value decomposition of G- ' /~BX,I; .~~,  where G is the positive definite limit matrix 
of ~(F:F,,)-', 

D is a d x d diagonal matrix with the positive singular values of G - ' / ~ B X J ~ ~ ~  along its diagonal. 
Partition rT = ( r l l ,  r 12 )  (q x q), rll(q x 4 ,  r12(q x (q - 4 )  and rT = (Px PI, where rT1r2,IT 
is d x p and is (p - d) x p. By the Eaton-Tyler result (Eaton and Tyler, 1994) about the asymptotic 
distribution of the singular values of a matrix, the limiting distribution of the smallest min(q - d, p - d) 
singular values of 

is the same as the limiting distribution of the singular values of the (q - d )  x (p - d) matrix 

By expression (12), we have 

where B,, is the ordinary least squares estimator of B given in equation (7). Observe that, since ~ ; l , ,= 0, 
B,, = firlX.~!2~;'12 and thus 

&(B, -B) = Jn(Bn -B ) X ~ / ~ ~ , ~ ' / ~  - I). (26)+ 2/11~(~1\/~2;'/~ 

Then 

The first equality follows from substituting B,, -B +B for B,,, expanding and using the fact that 
BX;;'~~,, = 0. The second equality follows by substituting equation (26). Then the first term on the 
right-hand side of the second equality is going to the distribution indicated in expression (25). The 
second term is going to 0 by Slutsky's theorem because 
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Consequently, A,! has the same asymptotic distribution as the sum of the squares of the singular values 
of Jn(rf2~;'12fi,,Q;ii2r22) by expression (25). which is X~,l-d)x(q-d) 

Lemma 2. Suppose that X(Y,,) iX, as n + oo,for all Y,, in the Y-sample space, where X is non- 
singular. If nW,,W: = ( F ~ F , , / ~ ) - 'has a positive definite limit matrix G = (g,,,), then H,, has a positive 
definite limit matrix H, and 

provided that 

I IW,i I lmax = 1 I(F;F,,)-'F;SIlmm = o(n-li2) (27) 

and conditions (b) and (c) of lemma 1 hold. 

Proof. Since u,,(Y,) ia ,  as k ioo,we have that for all E > 0 there exists k ,  such that for all k 3 k, 

Without loss of generality, we can assume that CE, n Wlk Wlik= gh,,> 0 (the development is analogous 
for the case g,,, < 0: when g,,, = 0 or when u ,  = 0 the limit is 0). Then, for a sufficiently large k, > k, we 
have 

There are two cases: 

(a) a, > 0 and 
(b) a ,  < 0. 

Case (a) is equivalent to  a,,- E > 0 and similarly case (b) is equivalent to a,,+ E < 0, for sufficiently 
small E. Therefore, for case (a) and for all E > 0 with min(g,,,, a,]) > E there exists k2 /zl such that 

- E)(gh,i - €1 C u,(Yk)nW/k Rllk (a, + e)(g,,, + €1 (28)
k>/<> 

or, equivalently (since all products of E are negligible) Ci  a,,(Yk)nWlk W,,,/< + ui1gb,,,as n ioo.Case (b) 
is analogous to case (a) with the inequalities in expression (28) reversed. Therefore, the ijth block of H,, 
satisfies 

which yields that H,, + X @ G =H .  Since the Kronecker product of two positive definite matrices is 
positive definite (see Harville (1997), example 7, page 369), H is positive definite. By a direct application 
of Slutsky's theorem (expression [A 4.191 of Bunke and Bunke (1986)), we obtain that 

H;li2 vec(W,,Z,, -B) 4N,,(o, I,, = I, @ I,) 

if and only if 

n'I2 vec(W,,Z,, -B) 4N,],(O, H). 

Now, a sufficient condition for expression (29) is equation (27) (see Bura (1996), chapter 5). 

Lemma 3. Suppose that 

Suppose that B,,(Y) converges to a,(Y) in quadratic mean, for all i, j = 1, . . .,p, and all Y in the 
relevant sample space. Also, suppose that cov{B,,(Yk), B,,(YI)} + 0 as n ioo,for k ,  1 = 1, . . .,n, k # I .  
Then, A,, is an L~-consistent estimate of H.  

Proof. Since H is the limit matrix of H,,, it suffices to show that 
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Then, from the triangle inequality, it follows that A,, is an L2-consistent estimate of H. Consider the ijth 
blocks of 8,,and H,,.The lmth entry of the ijth block of H,, is 

5a,j(Yk)nW/k W t r k  (32)
k 

and of A,, is given by expression (32) with 8, in place of a,,, for all m, n = 1, . . ., q, and all i, 
j = 1, . . ., p. Then, expression (31) is true if and only if 

i n L 2 , f o r a l l m , n =  1 , .  . ., q , a n d i , j = l , .  . . , p .  Now, 

The integration can be brought inside the sum by the bounded convergence theorem (see Billingsley 
(1986), page 214), since expression (30) holds by assumption and 8,,(Yk) is consistent in quadratic mean 
for a,,(Y,<); therefore 8,(Yk) - a,(Yk) is L 2  bounded, for all k = 1, . . ., n. But then, we also have that 
term (33) vanishes by the L'-consistency of $,(Y,J. Furthermore, term (34) goes to 0 by assumption. 
Hence, 
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