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Summary. A new estimation method for the dimension of a regression at the outset of an analysis is
proposed. A linear subspace spanned by projections of the regressor vector X, which contains part
or all of the modelling information for the regression of a vector Y on X, and its dimension are
estimated via the means of parametric inverse regression. Smooth parametric curves are fitted to
the p inverse regressions via a multivariate linear model. No restrictions are placed on the
distribution of the regressors. The estimate of the dimension of the regression is based on optimal
estimation procedures. A simulation study shows the method to be more powerful than sliced
inverse regression in some situations.

Keywords: Asymptotic test for dimension; Dimension reduction; Inverse regression; Parametric
inverse regression; Sliced inverse regression

1. Introduction

Let Y € R” and X € R” with joint cumulative distribution function (CDF) F(Y, X). Regression
analyses typically tend to concentrate on the study of the first two moments of the condi-
tional CDF of Y given X, F(Y|X). In general, though, the goal of regression is the study of
the behaviour of F(Y|X), as the value of X varies in its marginal sample space. As a means of
characterizing the regression structure, consider replacing X by k < p linear combina-
tions of its components, n1X, . . ., n; X, without losing information on F(Y|X) so that, for
all values of X,

Y 1L X|np'X 1)

where 7 is the p x k matrix with columns 7;. The notation U L V|W in expression (1) means
that U is independent of ¥ given any value for W (Dawid, 1979). Expression (1), as a
mathematical formulation of the dependence of Y on X, was introduced by Cook (1994a). It
expresses the fact that the conditional CDF of Y|X depends on X only through n"X, the co-
ordinates of a projection of X onto the k-dimensional linear subspace spanned by the
columns of n. Consequently, n"X contains equivalent or sufficient, in the statistical sense,
information for the regression of Y on X. Most importantly, if £ < p, then a sufficient
reduction in the dimension of the regression is achieved, which in turn leads to sufficient
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summary plots of Y versus m X as graphical displays of all the necessary modelling
information for the regression of Y on X. Subsequently, sufficient summary plots can guide
the selection of appropriate models for F(Y|X).

For any vector or matrix «, let S(a) denote its range space and dim{S(«)} denote its
dimension. If expression (1) holds then it also holds with 7 replaced by any basis for S(n). In
this sense, expression’(1) can be regarded as a statement about S(n) rather than a statement
about 7, per se. Thus, when expression (1) holds we follow Li (1991, 1992) and call S(n) a
dimension reduction subspace for F(Y|X), or for the regression of Y on X.

Obviously, the smallest dimension reduction subspace provides the greatest dimension
reduction in the predictor vector. There are several ways to define such a subspace. In this
paper we use the central dimension reduction subspace, denoted Syx (Cook, 1994b, 1996,
1998a, b). Sy is the intersection of all dimension reduction subspaces for F(Y|X) and is
trivially a subspace but is not necessarily a dimension reduction subspace. The existence of
central subspaces can be assured by placing fairly weak restrictions on aspects of the joint
distribution of Y and X (Cook, 1994a, 1996). Throughout this paper, we focus on regressions
for which central dimension reduction spaces exist.

The subspace Syx = Syjx(m) is in effect a ‘metaparameter’ that is used to index the
conditional distribution of Y given X. The columns of the p x k£ matrix i will denote a basis
for the central subspace Sy, and k will be used to denote its dimension or the structural
dimension of the regression of Y on X (Cook and Weisberg, 1994). Our main objective is the
estimation of Syx.

The paper is organized as follows: existing dimension estimation methods, with emphasis
on sliced inverse regression (SIR) (Li, 1991), are reviewed in Section 2. The example in
Section 2 illustrates both the application of SIR and its limitations. The estimation method
proposed, namely parametric inverse regression (PIR), is introduced and described in Section
3. Section 4 contains its extension to the non-constant variance case. The algorithm des-
cribing the PIR dimension reduction procedure is presented in Section 5. In Section 6, PIR is
applied to the example of Section 2 and a simulation study to compare the power of the two
testing methods for dimension is carried out. A concluding discussion is presented in Section
7. The lengthier proofs are given in Appendix A.

2. Background: inverse regression and sliced inverse regression

Methods are available for estimating portions of the central subspace Syy, provided that
certain conditions are placed on the marginal distribution of the predictors.

Let Sgxy) denote the subspace spanned by {E(X|Y) — E(X): Y € Qy}, where Qy C R" is
the marginal sample space of Y. Given expression (1), assume that the marginal distribution
of the predictors X satisfy the following condition, which henceforth will be referred to as the
linearity condition: for all b € R?, E(bb"X|n"X) is linear in n"X.

Under this linearity condition on the regressor distribution, Li (1991), theorem 3.1, showed
that the centred inverse regression curve E(X|Y) — E(X) satisfies

EX|Y) — E(X) € S(Z.n).
Equivalently,

Sexyy) C S(E,m) = X, Sy)x 2
where 3, = cov(X).
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The linearity condition on E(b"X|n"X) is required to hold only for the basis 1 of the
central subspace. Since 7 is unknown, in practice we may require that it holds for all possible
7, which is equivalent to elliptical symmetry of the distribution of X (Eaton, 1986). Li (1991)
mentioned that the linearity condition is not a severe restriction, since most low dimension-
al projections of a high dimensional data cloud are close to being normal (Diaconis and
Freedman, 1984; Hall and Li, 1993). In addition, there often exist transformations of the
predictors that make them comply with the linearity condition. Cook and Nachtsheim (1994)
suggested reweighting of the predictor vector to make it elliptically contoured.

Suppose that 3, > 0 and let Z be the standardized version of X,

Z = 3;%X — EX)}.

Obviously, E(Z) =0 and cov(Z) = I,. The observable sample version 7 is constructed by
replacing X, and E(X) with their usual moment estimates. Also, since Z is a 1-1 and onto
linear transformation of X, Y _ X|n"X if and only if Y 1L Z|3TZ, where 8 = X!’y or
B = 2;/277,-, i=1,2,..., k. By condition (2), we obtain that

E(ZIY) € S(=*n) = S(B) = Syz. 3)

The containment relationship (3) readily implies that E(Z|Y) = Pg E(Z|Y), where Pj is the
orthogonal projection operator for S(3) with respect to the usual inner product. It also
implies that Sg)y, is a subspace of Syz. This does not guarantee equality between Sy, and
Syjz and, thus, inference about Sy )y, possibly covers only part of Sy ;. The missed part of
Sy;z might be recovered from higher order moments of the conditional distribution of Z
given Y (Cook, 1998b; Cook and Weisberg, 1991; Li, 1991, 1992), but such issues are not
addressed in this paper. We assume throughout that Sgy, is non-trivial, in the sense that it
contains non-zero directions, should such exist.

Both equation (2) and expression (3) lead to the use of inverse regression as an estimation
tool for a fraction of or the entire central dimension reduction subspace. A popular such
method is SIR, proposed by Li (1991). In SIR, the range of the one-dimensional variable Y is
partitioned into a fixed number of slices and the p components of Z are regressed on Y, a
discrete version of Y resulting from slicing its range, giving p one-dimensional regression
problems, instead of the possibly high dimensional forward regression of Y on Z. Then, a
very simple nonparametric estimate of the inverse regression curve E(Z|Y) estimates the
central dimension reduction subspace via estimating cov{E(Z|Y)}. This can be based on the
fact that S[cov{E(Z|Y)}] = Sgzy, except on a set of measure 0 (for example, see Cook
(1998a), proposition 11.1, and Eaton (1983), proposition 2.7). The SIR estimate of
cov{E(Z|Y)} is given by

H
a)\V{E(Zl Y)} = /Z ﬁ/zrhhﬂ,l;l
h=1

where H is the fixed number of slices, p;, = n,/n, with n being the total sample size and »,, the
number of observations in the Ath slice, and 7, is the p-vector of the average of Z within slice
hiletl, =5 > ... > Xp be the ordered eigenvalues of cov{E(Z|Y)}. Li (1991) proved that,
if d = dim(Sg, y), the statistic

Li=nY & 4



396 E. Bura and R. D. Cook

has an asymptotic y’-distribution with (p — d)(H — d — 1) degrees of freedom, provided that
the regressors are normal. The test statistic can be used to estimate the dimension of S, = by
performing tests of d =jversusd > j+1,j=0,...,p— 1.

Other testing techniques based on inverse regression that use the same simple nonparametric
estimation method as Li (1991) have been developed. Schott (1994) proposed a test which
requires elliptically symmetric regressors, and for which the tuning constant is the number of
observations ¢ per slice as opposed to the number of slices H in Li (1991). To obtain the
asymptotic distribution of his test statistic, Schott let ¢ go to co. Velilla (1998) introduced
another testing method, which does not impose restrictions on the regressor distribution,
where ¢ is fixed and the number of slices H varies.

SIR is a simple and useful technique for reducing the dimension in a regression problem;
nevertheless, it has limitations. Normality of the regressor vector X is required for the x?
asymptotic test for dimension to apply (Li, 1991). Requiring normality for the predictors was
proved not to be necessary for the asymptotic result to hold in Bura and Cook (1999) and
Cook (1998a), where it was shown that restrictions should be placed on the conditional
covariance structure of the standardized version of X instead. These restrictions are trivially
satisfied if X has a multivariate normal distribution, but they also contradict Li’s (1991) claim
that the asymptotic distribution of L, does not depend on the constant variance assumption
of the conditional distribution of X given Y. Most importantly, SIR can be ambiguous about
the estimate of the dimension as the latter depends sometimes crucially on the choice of the
number of slices. As a result, all methods that depend on a tuning constant related to the
choice of the number of slices suffer from the same ambiguity in estimation (Schott, 1994;
Velilla, 1998).

To illustrate some of the issues discussed above, we consider the horse mussel data: the data
consist of a sample of 172 horse mussel measurements collected in the Marlborough Sounds,
which are located off the north-east coast of New Zealand’s South Island (Camden, 1989; Cook
and Weisberg, 1994; Cook, 1998a). The response variable is muscle mass M, the edible portion
of the mussel, in grams. The quantitative predictors are the shell width ¥ in millimetres, the shell
height L in millimetres, the shell length £ in millimetres and the shell mass .S'in grams. The actual
sampling method is unknown, but we assume that the data are independent and identically
distributed (IID) observations from the overall mussel population. The regression software
package Arc (Cook and Weisberg, 1999) was used for the computations.

A scatterplot matrix of the response, shell height, shell length, shell width and shell mass is
presented in Fig. 1(a). It is evident that the linearity condition needed for SIR to work may be
violated. The transformed variables log(#) and log(S) will be used in place of W and S
respectively, so that the linearity condition is satisfied by the regressor variables.

The results of applying SIR to the regression of M on H, L, log(W) and log(.S) are given in
Tables 1 and 2; Table 1 contains the results when six slices were used and Table 2 when 15
slices were used. The rows of both tables summarize hypothesis tests of the form d = j versus
d > j. For example, the first row gives the statistic L, = 156.68 with (p —d)(H—d—1) =
(4 —0)(6 — 1) = 20 degrees of freedom and a p-value of 0.000. As we can see from Tables 1
and 2 SIR gives contradictory results: it estimates the dimension to be 1 or 2, depending on
the number of slices used.

3. Parametric inverse regression

The proposed new dimension reduction method of PIR fits smooth parametric curves on
the p inverse regressions via a multivariate linear model. No distributional restrictions are
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(a) {b)
Fig. 1. Scatterplots of the mussel data: (a) untransformed predictors; (b) transformed predictors
Table 1. SIR results for H=6
j L, Degrees of  p-value
freedom
0 156.68 20 0.000
1 22.992 12 0.028
2 9.0924 6 0.168

Table 2. SIR results for H=15

j L Degrees of  p-value
freedom

0 173.55 48 0.000

1 35.477 33 0.352

2 15.614 20 0.740

imposed on the regressor vector. To model the conditional expectation of Z, the standardized
version of the regressor vector X, given Y, a multivariate linear model is fitted with Z =

(ziy o v o zp)T being the response and Y = (y,, . . ., »,,)" the explanatory vector. Let
. T B Bz By
.l 521 /822 /8211
El ¢y | = nom| :
z, : : :
! /6(]1 /8q2 /qu

where the f; are arbitrary, R-valued linearly independent known functions of Y. Suppose
that a random sample of size # is available on (Y, X) resulting in the # x m matrix ), of
observations on the responses, and in the n x p matrix X, of observations on the predictors.
Then, including a matrix of errors E,, the model becomes
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anyn = FnB + En (5)

where Z, = (z;)) = {X, — E(X,)}=:"%, an n x p random matrix, F, = (f;), an n x ¢ fixed
matrix with f; = f(Y;) = f; — Z_, fy/n being the centred version of f; = f(Y,), and B = (5,
the ¢ x p matrix of coefficients. Centring is used so that the model is consistent with the fact
that the expectation of the column averages of Z, equals 0. The error matrix E, satisfies

E(Enlyn) = 0’ 6
COV{VCC(E,,)ly"} = zzly ® In ( )
where X, isa p x p positive definite, unknown matrix that does not depend on Y and vec(E,) is

the vector produced by concatenating the columns of the error matrix E,. The symbol ®
denotes the Kronecker product. Clearly, the rank of F, is q. We assume that » > max(p, q)
to avoid trivial cases. No distributional assumptions on the errors are made except that
the rows of the error matrix E, are conditionally independent with mean 0 and constant
covariance matrix X, given all the responses J,,.

According to equation (5), Sggzy, is the linear subspace of Sy which is spanned by the
rows of F,B, i.e. SB"F)) = Skazy)- Therefore, since

rank(B"F;) = rank(F,B),

rank(F,B) < dim(Syz), yielding that rank(F,B) is a lower bound on the dimension of the
central dimension reduction subspace.

Observe that rank(F,B) = rank(B"FF,B) = rank(B) since F,F, is a positive definite
matrix (see section A4.4 of Seber (1977)). In consequence, inference on the dimension of
Skajy) can be based solely on B in the sense that an estimate of the rank of B constitutes an
estimate of a lower bound on the dimension of Syz.

The estimate of B to be used for inference on the rank of B is the ordinary least squares
estimate, given by

Bﬂ = (F;I;‘FI1)71F’I]1-ZII‘ (7)

Since Z, is unobservable, B, is unobservable and thus in practice it is necessary to use the
sample version of Z, when computing B,. However, it is sufficient to work in terms of Z, for
deriving the asymptotic distribution of the test statistic A, described in theorem 1 for the
rank of B. To find the asymptotic distribution of A, we first need to find the asymptotic
distribution of a standardized version of B,,.

Let H, denote the covariance matrix of /n vec(B, — B), i.e.

Hn = z:zly ® (F;];F"/}’l)-l.

If H, has a positive definite limit matrix H, then

Jnvee(B, —B) > N,,(0, H) ®)

provided that certain conditions are satisfied (see lemma 1 in Appendix A).
Assume that there is a ¢ x ¢ positive definite matrix G so that

(FIF"/I’I)_] — G. (9)

n—00

Also, assume thata consistent estimate ﬁ}z,y isavailable,as X, , isusually unknown. Forexample,
33, can be taken to be (n — ¢)"'(Z, — F,B,)"(Z, — F,B,), which is also unbiased for %,,. Let
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I/_\In = 22[}) ® (FIF,,/n)_l. (10)
Then, if assumption (9) holds,
H, = H in probability. (11)

The convergence in expression (11) is a direct application of the triangle inequality and the
fact that continuous functions of consistent estimates are themselves consistent. The remarks
above in conjuction with a direct application of the multivariate version of Slutsky’s theorem
(see expression [A4.19] in Bunke and Bunke (1986)) and expression (8) obtain the following:

—1/2 D
vnA, ' vee(B, —B) > N, L,) = N0, I, ® L)). (12)
Letd= dim(SE(Zm) and G_ =F'F, /n. We have shown that d = rank(B) and thus, since
rank(B) = rank(G ™"/ Z,J, ) we use the standardized matrix

1/2
B, =G,"’B,3,)/
to estimate d where
=(F,F,)'F,Z, (13)

is now the estimate of B based on the sample version Z,, = (X, — X,)37'/2 of the standardized
predictor matrix Z,, where X, and 3, are the usual sample moment estimates of E(X,) and
3, respectively. We give a test statistic (A,) for d = rank(B) = dim(Spzy)) in theorem 1. The
proof is given in Appendix A.

Theorem 1. Assume that model (5) holds, that G, converges pointwise to a positive definite

limit and that 2"l) is a consistent estimate of X,,. Let $j, j=1,... min(g, p), be the
singular values of B,. Then
min(g, p) ~
Ag=n 3 ¢ (14)
J=d+1

is asymptotically distributed as a qu_,,)( »—a) Tandom variable.

We use A, as a test statistic for the rank of B. For example, to test the hypothesis that
d =1 compare A, with the percentage points of a x>-distribution with (¢ — 1)(p — 1) degrees
of freedom. As an aside, it is easy to see that the asymptotic test in theorem 1 coincides with
the usual F-test for testing d = 0, i.e. that all the coefficients are 0, when p = 1.

4. The non-constant covariance case

In Sections 2 and 3 the parametric models that were used assumed that the covariance
structure of the error matrix given Y was constant, i.e. independent of Y. Occasionally, this
assumption may be seriously violated, resulting in dimension estimation errors. In this
section the non-constant error covariance structure case is addressed.

We assume that the regression model (5) holds but now cov(Z|Y) is a function of Y:

cov(Z|Y) = 2,(Y) = (o,(Y)), =1

In consequence, the covariance structure of the error matrix E, can no longer be represented

by the Kronecker product of X,, and the identity I, for
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coV(Zys, ZijlY =Y,) = 0;,(Yy)

fork=1,...n,ij=1,... p. Hence,thecovariance matrix of vec(Z,|),), and consequently
of vec(E,), is an np x np symmetric matrix consisting of p? blocks of order n x n, where the
ijth block is the diagonal n x n matrix with ,/(Y,), . . ., 0;(Y,) along its main diagonal for i,
j=1,...,p.

In vector form, B, can be written as

Vec(ﬁn) = VeC(WﬂZH) = (Ip ® WH) VeC(ZH)’

where W, = (F'F,)"'F! is a ¢ x n known matrix of weights. The covariance matrix of
vec(B,) equals

@, ® W,) covivec(Z,)}(1, ® W,,).
Thus, cov{vec(B,)} is a gp x gp block matrix, whose ijth block is given by
W, diag{o;(Y,), . . ., 0, (Y )} W, (15)

fori,j=1, ..., p, and H, = cov{n'/? vec(W,Z, — B)} is a gp x gp block matrix, whose ijth
block is given by expression (15) multiplied by 7.
Assuming that H, has a positive definite limit H, we readily obtain

D
vnvec(W,Z, —B) - N,,(0, H) (16)

provided that conditions (a)—-(c) of lemma 1 in Appendix A are satisfied. Additionally,
expression (16) also holds if the conditional covariance of X; and X; given Y is asymptotically
constant for all , j =1, . . ., p (see lemma 2 in Appendix A).

Let flz,y(Y) = (6,(Y)) be a consistent estimate of X,,(Y) = (0,(Y)), forall i, j=1,...,p
and all Y € Qy. Let H, be the gp x gp matrix whose ijth block is given by expression (15)
multiplied by », with 6,,(Y,) in place of o;;(Y,).

Since H,, is non-singular, if it were also consistent for H, then by the multivariate version of
Slutsky’s theorem we would obtain

;2 vec(W,Z, — B) > N,y (0, 1, =1, ®1,).

The dimension d is not affected by this non-singular transformation. Weak consistency, in the
sense of A, — H in probability, is easy to establish given a weakly consistent estimate of
33,,(Y). Moreover, by placing further conditions on the entries of f]z|y(Y) we obtain that H,
is L* consistent for H (see lemma 3 in Appendix A).

Let vec(By,) = Ifl,jl/ 2vec(W,Z2,). The ¢ x p matrix By, that results from the arrangement
of the vector vec(B,) into p columns satisfies rank(By,) = rank(W,2.,), since H;,'/? is non-
singular. Also, let

min(p.q) _
Ag=n Z ¢12a (17)
J=d+1
where <f>j, j=1,... min(p, q), denote the ordered singular values of By,. The following
theorem states the conditions under which the asymptotic distribution of A, is x>

Theorem 2. Assume that conditions (a)~(c) of lemma 1 are satisfied and that H, is
consistent or L? consistent for a positive definite matrix H. If d = rank(B) = dim(Sgzyv))s
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then A, as defined in equation (17) is asymptotically distributed as a xé,_,,)(q_d) random
variable.

Proof. The proof is analogous to the proof of theorem 1 in Section 3.

The inferential procedure on d is the same as in the constant covariance case, provided that
33,,(Y) can be estimated consistently. The computation of a consistent estimate of 3, is
presented next.

Assume that E(Zf) <oo,forallj=1,... p. Let

&u(Y) = C/O\vn(Z[a ZjlY)
= En(ZiZjIY) - En(ZzlY) En(ZjlY) (18)

for i, je(l,2,..., p}, where E,(-|Y) denotes the least squares estimate of E(-|Y) from
regressing the argument in (-) on Y. The choice of the regression model to be fitted on the
argument in (-) is guided by the data. Under well-known conditions, least squares estimates
‘are consistent and thus

G,(Y) = o,(Y) (19)

in probability, for all i, j € {1, 2, . . ., p}, and all Y € Qy.

Let f]zb,(Yk) be the p x p matrix with entries given by equation (18), computed at Y, for
k=1, ..., n Then, expression (19) implies that 33, ,(Y,) is a consistent estimate of 3, (Ye),
forallk=1,.. ., n

To obtain L*-consistency for the covariance matrix estimate H,, we should also require

z|y

that 5,/(Y,) be L* consistent for oY), forall i, j=1,...,p,k=1,... n and that
Cov{&ij(Yk)’ &ij(Y[)} Pares 4 0,

forallk, /=1, ..., n, k+#[(see lemma 3).

5. Parametric inverse regression algorithm

We can use the asymptotic distribution of A, to estimate the rank d of B, or equivalently the
dimension of the subspace Syz)y, C Sy|z, as follows: start with j = 0. To test the hypothesis
that d = j, carry out the following steps.

Step I: by visual inspection of the scatterplot matrix, decide what function(s) of Y fit
the data the best. The choice of function(s) can be facilitated by dynamically overlaying
curves on the scatterplots such as polynomials of different degrees. This can be easily
implemented in software that supports dynamic graphics. Form the centred incidence
matrix F, for the p inverse regressions, and compute its rank q.

Step 2: standardize the regressor vector by letting Z, = (X, — X,)3;"/%, where X, = 1,X"
and 3, is the moment estimate of the covariance matrix of X.

Step 3: obtain the least squares matrix of estimated coefficients B, from the p inverse
regressions of the Z,i=1,2,...,p, onY.

Step 4: by visual inspection of the scatterplot matrix, decide whether the constant co-
variance assumption holds. If it does,

(a) let 2z,y be the matrix of residuals from the regression of Z on Y divided by n — ¢, and
G, = (FIF,/n)" and
(b) compute the standardized least squares matrix of coefficients, By, = G,/ 2]?,,2;}1,/ g
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If it does not,

(a) use least squares to estimate G,(Y,) as described in equation (18), fork =1, .. ., n,

(b) let W, = (FIF,)"'F’. Form the covariance matrix H,, as a gp X gp matrix, whose
ijth block is given by expression (15) multiplied by #.

(c) compute the standardized matrix of coefficients By, as described in the paragraph
preceding equation (17).

Step 5: compute the ordered singular values ¢A5j of B, and construct the test statistic A .
Step 6: compare A; with the quantiles of a X(2p—j)x(q—j) distribution; if it is smaller conclude
that d =; if it is bigger, conclude that d > j, set j =j+ 1 and repeat the procedure.

The d eigenvectors of the least squares estimate of B, that correspond to its d largest
eigenvalues, multiplied by F, yield estimates of d of the basis vectors of Sy ;. They, in turn,
can be scaled back to estimates of basis vectors of the central dimension reduction subspace
for the non-standardized X, by multiplication with 33;'/? on the left.

6. Applications and simulations

6.1. The horse mussel data revisited
To illustrate the PIR dimension reduction method, we reconsider the horse mussel data. The
scatterplot matrix in Fig. 1(b) visually suggests fitting quadratic curves on all three inverse
regression plots. The quadratic fit is also supported by overlaying polynomials of degree 2 on
the scatterplots of the regressors versus the response. The results of the analysis are given in
Table 3.

The test indicates a one-dimensional structure. Thus, one linear combination of the
regressors is sufficient to characterize the behaviour of the conditional CDF of M given H, L,

log(S) and log(W):
0.028H — 0.029L — 0.593 log(S) + 0.804 log(W). (20)

The coefficients of the transformed regressors in expression (20) are the elements of the
eigenvector corresponding to the largest eigenvalue from the eigenanalysis in step 6 of the PIR
algorithm of Section 5.

6.2. Power comparison of sliced inverse regression and parametric inverse regression
This section contains a simulation-based comparison of the power of the two dimension
estimation methods SIR and PIR. For all regression models to be considered in this section,
three sample sizes are used: n = 50, 100, 250. For each sample size and each distribution of
the regressor vector X, the p-values corresponding to the test statistics for selected dimensions
for both tests were collected over 1000 replications. For the PIR method, only polynomials in
Y were fitted to the inverse regressions. The degree of the polynomial was decided on by a
visual inspection of the scatterplots of a few initial simulated data, in conjunction with the

Table 3. Results for the mussel data

j A Degrees of  p-value
freedom
0 701.82 8 0.000

1 5.8895 3 0.117
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interactive superimposition of curves of different degrees. The latter can be easily carried out
in Arc (Cook and Weisberg, 1999).

The first model to be studied has structural dimension 1. The response Y is generated
according to the model

y=2x + x5+ x4+0.5¢ 21

where € is a standard normal variate. Two distributions are considered for the regressor
vector X:

(a) X~ N(0, 1) and
(b) X distributed as Pearson type II with parameters m = —0.5 and X =1, (Johnson,
1987).

The Pearson type II distribution belongs to the family of elliptically contoured distributions
and therefore satisfies the linearity condition that is necessary for the theory to apply.

The numerical entries of the rows of Tables 4 and 5 corresponding to the test statistics
indexed by 0 are empirical estimates of the power of the corresponding test. They represent
the proportion of times that the null hypothesis of dimension 0 is rejected, when the nominal
significance level is 0.05. The numbers in parentheses are the analogous proportions for a
significance level of 0.01. The entries of the rows of Tables 4 and 5 corresponding to test

Table 4. Empirical power and size of SIR applied to model (21)

Results for normal X Results for Pearson I X

H=5 H=10 H=15 H=5 H=10 H=15
n=>50
L, 1.0 (1.0) 1.0 (0.975) 0.964 (0.640) 0.993 (0.968)  0.941 (0.687) 0.756 (0.350)
L, 0.053 (0.009)  0.036 (0.008)  0.025 (0.003) 0.063 (0.010)  0.041 (0.006)  0.031 (0.004)
n=100
L, 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 0.999 (0.999)  0.997 (0.996) 1.0 (0.993)
L, 0.053 (0.009)  0.053 (0.008)  0.036 (0.007) 0.068 (0.013)  0.052 (0.005)  0.045 (0.009)
n=250
L, 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 1.0 (0.999) 0.999 (0.999)
L, 0.053 (0.011)  0.042 (0.005)  0.047 (0.008) 0.064 (0.015)  0.053 (0.008) 0.055 (0.014)

Table 5. Empirical power and size of PIR for model (21)

Results for normal X Results for Pearson II X

Degree 1 Degree 2 Degree 3 Degree 4 Degree 1 Degree 2
n=>50
A 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 1.0 (0.999) 0.999 (0.999)
A 0.087 (0.022)  0.025 (0.007) 0.061 (0.022) 0.037 (0.013)
n=100
Ay 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0)
A 0.068 (0.017)  0.025 (0.005)  0.024 (0.003) 0.033 (0.003)
n=250
A 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0)

A 0.052 (0.005)  0.059 (0.014)  0.061 (0.016) 0.02 (0)
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statistics indexed by 1 are empirical estimates of the size of the test. The missing entries in
Table 5 correspond to fitting a first-degree polynomial, thus allowing only the test of d =0
versus d = 1 because ¢ = 1. The row entries of the tables throughout this section are to be
interpreted in the same or an analogous way. The symbol H stands for the number of slices,
and degree stands for the degree of the fitted polynomial.

Apparently, the SIR and PIR tests are roughly equally powerful for both normally and
Pearson-II-distributed Xs, with PIR performing uniformly slightly better. The estimated power
entries also seem to indicate that the performance of SIR deteriorates as the number of slices
increases, especially when X is Pearson II distributed and the sample size is small. PIR’s
performance, in contrast, is consistently more powerful even when we overfit the inverse mean
functions as exhibited in Table 5 where polynomials of degree 2, 3 and 4 were fitted (for normal X).

Next, we consider the following model of structural dimension 2:

where € is a standard normal variate. The regressor vector X is assumed to have a four-variate
standard normal distribution.

From Table 6 we can see that SIR would fail to detect dimension 2 with probability as high
as 0.94 (when n = 50 and H = 15). For SIR to give correct results, the sample size would have
to be significantly increased. In our simulations, SIR performs well when » = 250 and the
number of slices is small. However, PIR is significantly more powerful for all sample sizes,
even for a sample size of 50, and both degrees 3 and 4 (Table 7).

The last model that we study is based on model C in Velilla (1998), page 1094. The
regressor vector X' = (X, ..., X5) was generated so that X, = W,, X, =V, + W,/2,
Xys=-V+ W,/2, X, =V, + Vsand X5 = V, — V5. The only restriction placed on V and W
is that they be independent. Here, V', V; and V, are IID ¢, random variables, V53 ~ ¢35, and
Vs ~ s, and W, and W, are IID gamma(0.25) random variables. The dependent variable y
was generated according to the model

where € is a standard normal variate.

Table 6. Empirical power and size for SIR applied to model (22)

Results for the following values of H:

5 10 15 30
n=>50
L, 0.677 (0.486) 0.589 (0.319) 0.403 (0.161)
L, 0.163 (0.049) 0.123 (0.028) 0.062 (0.009)
L, 0.005 (0.001) 0.010 (0) 0.005 (0)
n =100
L, 0.951 (0.885) 0.919 (0.819) 0.879 (0.743)
L, 0.444 (0.244) 0.357 (0.164) 0.305 (0.121)
L, 0.018 (0.004) 0.023 (0.004) 0.013 (0.003)
n=250
Ly 1.0 (0.999) 1.0 (1.0) 1.0 (0.998) 0.998 (0.99)
L, 0.934 (0.832) 0.922 (0.821) 0.844 (0.697) 0.705 (0.477)
L, 0.038 (0.004) 0.036 (0.001) 0.038 (0.005) 0.026 (0.002)
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Table 7. Empirical power and size of PIR applied to model (22)

Results for the following values of n and degrees:

n=>50 n= 100 n=250
Degree 3 Degree 4 Degree 3 Degree 4 Degree 3 Degree 4
Ay 0.972 (0.935) 0.974 (0.938) 0.998 (0.994)  0.998 (0.993) 1.0 (1.0) 1.0 (1.0)
A 0.575 (0.388)  0.577 (0.392) 0.810 (0.668)  0.797 (0.643) 0.988 (0.969)  0.985 (0.966)
A, 0.032 (0.006)  0.024 (0.007) 0.047 (0.008)  0.046 (0.009) 0.057 (0.008)  0.049 (0.007)

Model (23) has structural dimension 2. The regressor distribution satisfies the linearity
condition by construction (see Velilla (1998), pages 1092-1093), even though it does not have
an elliptically contoured distribution.

Table 8 indicates that SIR estimates the structural dimension to be 1, across sample sizes
and choices of the number of slices. However, from Table 9 we can see that PIR is performing
much better with power ranging from 56.2%, when n = 50, the level is 0.01 and a cubic
function is fitted, to 90.4% when n = 250, the level is 0.05 and a fourth-degree polynomial is
used.

All power calculations performed for the models presented in this section, as well as a
number of power calculations for other models and/or other regressor distributions not
reported in this paper, indicate that PIR is at least as powerful as SIR for models with normal

Table 8. Empirical power and size of SIR applied to model (23)

Results for the following values of H:

5 10 15 30
n=>50
L, 0.996 (0.996) 0.951 (0.718) 0.831 (0.5)
L, 0.039 (0.009) 0.075 (0.014) 0.085 (0.019)
L, 0.001 (0) 0.002 (0) 0.007 (0.001)
n=100
L, 1.0 (1.0) 1.0 (1.0) 1.0 (1.0)
L, 0.032 (0.008) 0.079 (0.026) 0.119 (0.035)
L, 0.001 (0) 0 (0) 0.007 (0)
n=250
L, 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0)
L, 0.049 (0.014) 0.13 (0.064)  0.164 (0.071) 0.183 (0.9)
L, 0.002 (0) 0.004 (0) 0.007 (0) 0.011 (0.003)

Table 9. Empirical power and size of PIR applied to model (23)

Results for the following values of n and degrees:

n=>50 n =100 n= 250
Degree 3 Degree 4 Degree 3 Degree 4 Degree 3 Degree 4
A 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0)
A 0.726 (0.562)  0.808 (0.668) 0.786 (0.664)  0.84 (0.732) 0.871 (0.78)  0.904 (0.836)
A, 0.113 (0.021)  0.182 (0.053) 0.087 (0.02)  0.149 (0.051) 0.092 (0.027)  0.137 (0.048)
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or normal-like regressor distributions. More importantly, the simulation study shows that
PIR, along with its non-constant variance version, is significantly more powerful when the
models are more ‘complex’, and/or the regressor distributions are far from normal, as in the
case of model (23). Nevertheless, our simulations also tend to indicate that the non-constant
PIR method should be employed only when the violation of the constant variance assump-
tion is serious as it requires yet an additional estimation step.

7. Discussion

We have presented the new method of PIR for dimension reduction in a regression context.
PIR fits linear models to the inverse regressions of X on Y. An asymptotic x*-test for the
dimension d of Sy, is obtained as a result of the asymptotic normality of the least squares
estimate of B. The estimated dimension is an estimate of a lower bound for the dimension of
SYlX-

The results were also extended to the non-constant covariance structure case, under certain
conditions. The technique of PIR does not impose any restrictions on the distribution of X.
Even though it requires choosing the parametric function to be fitted, this is guided by and
based on the observed data. In contrast, SIR and its variants (Schott, 1994; Velilla, 1998)
require the subjective a priori choice of a tuning constant, such as the number of slices, which
is not suggested by the observed data but is rather arbitrarily selected. In consequence, PIR
does not suffer from the ambiguity of the dimension estimation of the aforementioned
methods.

The power of the PIR x*-test is shown to be higher than the SIR x’-test’s via a simulation
study. This is not surprising as

(a) we are fitting continuous curves based on all the data, instead of grouping the data in
slices, and
(b) the fitting method is least squares, a method yielding estimates with optimal properties.

As we confined the study only to fitting polynomials, we would expect even higher power gain
by including other parametric curves that appear to reflect the data pattern more accurately.
Nevertheless, PIR is desirable when marginal plots of the predictors versus the response give
a good idea about a functional form for the inverse mean functions. When there is doubt
about these mean functions, SIR may be the better choice.

PIR can be easily implemented as the computer code is distributed freely. The code can be
downloaded from http://gwis2.circ.gwu.edu/~ebura/publications.html. It
requires obtaining Arc first (Cook and Weisberg, 1999) from www.stat .umn.edu/arc.
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Appendix A

Lemma 1. Let M;q be the space of all pg x pq positive definite matrices and let F be the space of
distributions of the errors E,,. If

H, — He M, (24)

" p—oco
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then
Jnvec(B, —B) >N,,(0, H)
provided that the following three conditions are satisfied:

(a’) “CF;{F”) lF ”max = 0(n_1/2),
(b) SupFE]‘-{II\‘ >c [1x1] dF(x)} — 0 as ¢ — oo and

© mfzeM(}-){ min(2)} =71 >0,

where M(F) = {[,, xx TdF(x): Fe F} C M. The notation ||-||,,, identifies the norm on the vector
space of matrices defined by ||(a;)|l.x = max;;la;l, for a matrix A = (a;). Also, Ay, (%) is the smallest
eigenvalue of X and r is some positive real value. The error distributions that are usually considered
satisfy conditions (b) and (c).

Proof. The lemma follows readily from theorem 2.4.3 of Bunke and Bunke (1986), and the multi-
variate version of Slutsky’s theorem (see expression [A 4.19] of Bunke and Bunke (1986)).

A.1. Proof of theorem 1
Con51der the singular value decomposition of G~/ 2B)]ZU, , where G is the positive definite limit matrix
of n(F,F,)™",

R L

D is a d x d diagonal matrix with the positive singular values of G~ g3, along its diagonal.
Partition I'{ = (Pll» T1) (g% q), Ty (gxd), T, (g x(q—d)and T =Ty, Ty)" (p x p), where T3,
isd x pand T'}, is (p — d) x p. By the Eaton-Tyler result (Eaton and Tyler, 1994) about the asymptotic
distribution of the singular values of a matrix, the limiting distribution of the smallest min(q — d, p — d)
singular values of

(G, B, 5"
is the same as the limiting distribution of the singular values of the (¢ — d) x (p — d) matrix
JnB, = (TG, *B,5,)°T,)).
By expression (12), we have
Jrvee(THG, 8,55 "T0) BNy, aye-00, pa ®1,-0) (25)

where B, is the ordinary least squares estimator of B given in equation (7). Observe that, since F'1, = 0,
B, =B, X282 and thus

Jn(B, —B) = /n(B, — B)SY2 S 4+ /nB(ZY2811? 1), (26)
Then

Jnvee(T,G;'*B, S, °T,)) = /nvee(T LG, 2B, — B)S;, T} + 0,(1)

= /nvec(TLG; 2B, — B)X;'28;128,)°T )
+ /nvec(T LG, /B(E; /28,12 — DS, T} + 0,(1).

The first equality follows from substituting B, — B +B for B,, expanding and using the fact that
BEZU,/ I';, = 0. The second equality follows by substituting equation (26). Then the first term on the
right-hand side of the second equality is going to the distribution indicated in expression (25). The
second term is going to 0 by Slutsky’s theorem because

I'LG;"*B - LG '’B=0.
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Consequently, A, heis1 /the same asymptotic distribution as the sum of the squares of the singular values
of /(T 5,G,"*B,5,/°T,,) which is X{,_4yx_a) DY expression (25).

Lemma 2. Suppose that 3(Y,) — X, as n — oo, for all Y,, in the Y-sample space, where 3 is non-
singular. If "'W,WT = (F'F,/n)™" has a positive definite limit matrix G = (g,,), then H, has a positive
definite limit matrix H, and

Jnvec(W,Z, —B) >N, (0, H)
provided that
IW,llmax = [1ETE) ™ F ey = 0(n™'/%) @
and conditions (b) and (c) of lemma 1 hold.
Proof. Since 0,(Y,) — 0; as k — oo, we have that for all € > 0 there exists k, such that for all k > k,
o —e<0;(Yy) <oy+e

Without loss of generality, we can assume that 32, nW; W, = g;, > 0 (the development is analogous
for the case g;,, < 0: when g, = 0 or when 5;; = 0 the limit is 0). Then, for a sufficiently large k; > k, we
have

(0;—© Z; AWy W < ka o (YOnWy W < (o +€) > nWy W,
>k >k

k=ky

ZR]
There are two cases:

(a) o; >0 and
(b) 0, <0.

Case (a) is equivalent to o;; — ¢ > 0 and similarly case (b) is equivalent to o;; + € < 0, for sufficiently
small e. Therefore, for case (a) and for all € > 0 with min(g,,, o;;) > € there exists k, > k, such that

(0= )& — ) < 2 o(Y)InWy W, < (0 + €)(gn +€) (28)

k=ky

or, equivalently (since all products of ¢ are negligible) X} o,(Y,)r Wy W, — 0,8, as n — o00. Case (b)
is analogous to case (a) with the inequalities in expression (28) reversed. Therefore, the ijth block of H,,
satisfies

nwn diag{aij(Yl)r L) a-ij(Yn)}W;{ g a-ijG,

which yields that H, — X ® G = H. Since the Kronecker product of two positive definite matrices is
positive definite (see Harville (1997), example 7, page 369), H is positive definite. By a direct application
of Slutsky’s theorem (expression [A 4.19] of Bunke and Bunke (1986)), we obtain that

H, ' vec(W,Z, —B) >N, (0,1, =L, ® )
if and only if
n'’? vec(W,Z, — B) >N, (0, H). (29)
Now, a sufficient condition for expression (29) is equation (27) (see Bura (1996), chapter 5).

Lemma 3. Suppose that

nW,W, —GeM;. (30)
Suppose that 5,(Y) converges to 0;(Y) in quadratic mean, for all , j=1, ..., p, and all Y in the

relevant sample space. Also, suppose that cov{5;;(Y;), 5;(Y)} = Oasn — oo,fork,I=1,.. ,nk#1
Then, A, is an L*-consistent estimate of H.

Proof. Since H is the limit matrix of H,,, it suffices to show that
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H,-H

Then, from the triangle inequality, it follows that H, is an L?-consistent estimate of H. Consider the ijth
blocks of A, and H,,. The imth entry of the ijth block of H, is

—0 in L*. 3D

n n—>oo

; Uij(Yk)n Wi Wi (32)

and of H, is given by expression (32) with 6; in place of oy, for all m, n=1, ..., ¢, and all §,
j=1, ..., p. Then, expression (31) is true if and only if

Z Tij (Yk)n I/Vlk mk Z Tij (Yk)n I/V/k mk n—>_o)oo

in L2, forallmn=1,...,g,and i,j=1, ..., p. Now,

n 2 n
E{l; &ij(Yk)n WiyW i — Z zj(Yk)n Wy, mk} = ELEI {6'ij(Yk) - Uij(Yk)}z(n W ka)z]

k=1

+ E l:i i O'U(Yk) th(le)} xj(Y ) Gt/(Y )} nW/k manVIz Ver]

k=1 r=1
r#k
- ;1 E(6(Y,) — 0, (Y)W W] (33)
+ Zl S EL(6,(Y0) — 0y (YOG, (Y,) — 0y (Y,)) nW Wt W, W, ). (34)
=

The integration can be brought inside the sum by the bounded ‘convergence theorem (see Billingsley
(1986), page 214), since expression (30) holds by assumption and 6;,(Y,) is consistent in quadratic mean
for ;;(Y,); therefore &, ](Yk) o,;(Yy) is L? bounded, for all k =1, , n. But then, we also have that
term (33) vanishes by the L’-consistency of &; ;7(Yi). Furthermore, term (34) goes to 0 by assumption.
Hence,

n 2
E kE {(6;(Y1) — 0y (YOmWy W, a4 0
=1

11— 00

forall,m=1,...,q,i,j=1,...,p.
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